Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem

نویسنده

  • Zhengfu Xu
چکیده

In this paper, we present a class of parametrized limiters used to achieve strict maximum principle for high order numerical schemes applied to hyperbolic conservation laws computation. By decoupling a sequence of parameters embedded in a group of explicit inequalities, the numerical fluxes are locally redefined in consistent and conservative formulation. We will show that the global maximum principle can be preserved while the high order accuracy of the underlying scheme is maintained. The parametrized limiters are less restrictive on the CFL number when applied to high order finite volume scheme. The less restrictive limiters allow for the development of the high order finite difference scheme which preserves the maximum principle. Within the proposed parametrized limiters framework, a successive sequence of limiters are designed to allow for significantly large CFL number by relaxing the limits on the intermediate values of the multistage Runge-Kutta method. Numerical results and preliminary analysis for linear and nonlinear scalar problems are presented to support the claim. The parametrized limiters are applied to the numerical fluxes directly. There is no increased complexity to apply the parametrized limiters to different kinds of monotone numerical fluxes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows

In Xu [11], a class of parametrized flux limiters is developed for high order finite difference/volume essentially non-oscillatory (ENO) and Weighted ENO (WENO) schemes coupled with total variation diminishing (TVD) Runge-Kutta (RK) temporal integration for solving scalar hyperbolic conservation laws to achieve strict maximum principle preserving (MPP). In this paper, we continue along this lin...

متن کامل

Numerical Analysis and Scientific Computing Preprint Seria A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows

In Xu [14], a class of parametrized flux limiters is developed for high order finite difference/volume essentially non-oscillatory (ENO) and Weighted ENO (WENO) schemes coupled with total variation diminishing (TVD) Runge-Kutta (RK) temporal integration for solving scalar hyperbolic conservation laws to achieve strict maximum principle preserving (MPP). In this paper, we continue along this lin...

متن کامل

Maximum principle preserving high order schemes for convection-dominated diffusion equations

The maximum principle is an important property of solutions to PDE. Correspondingly, it’s of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO s...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2014